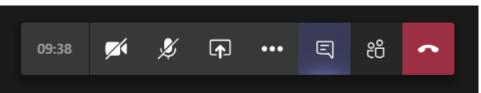


Webinar Logistics & Guidelines

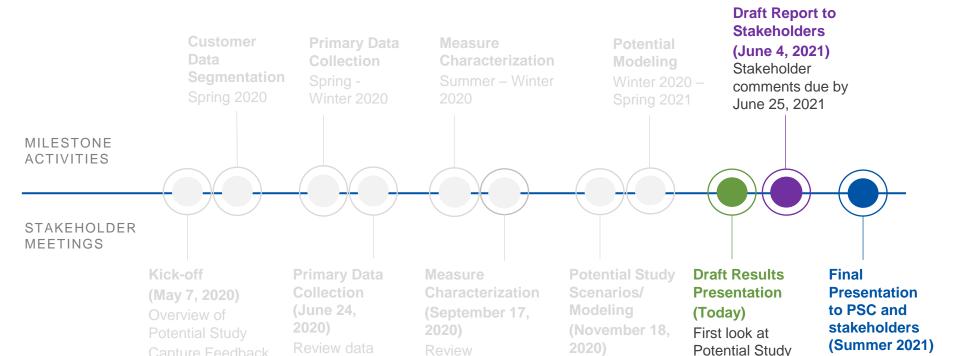
All parties except presenter muted to avoid unnecessary noise distraction



If you have an immediate question, or audio or video is poor please send an instant message to the moderator

We will stop today's presentation several times to take questions

Your Settings


Agenda

Recap on Potential and Definitions of potential Methods High-level recap of methods **Technical Potential** Draft results across sectors Comparison to 2017 study **Draft Results** Drivers of change Draft results across sectors **Economic Potential** Comparison to 2017 study **Draft Results** Drivers of change Refresher on ramp rate expert engagement Ramp Rate Stakeholder engagement results Sub-Group Results Changes made on ramp rates Optimized & Current Policy Draft results across sectors Comparison to 2017 study Potential Draft Results Drivers of change

Draft results across sectors

Scenario Draft Results

Timeline of Milestones and Meetings

CADMUS

Present final

results, findings

and conclusions

results and

preliminary

comments to draft report

Report Structure

1st Draft Report will include:

Executive Summary

Potential Study Approach

Technical and Economic Potential Results

Cross-Sector Overview of Results

Will include ----- Residential Sector Results

Commercial and Government Sector Results

Industrial Sector Results

Agricultural Sector Results

Optimized and Current Policy Potential

Maximum Adoption

Ramp Rates

Optimized Potential by Scenario

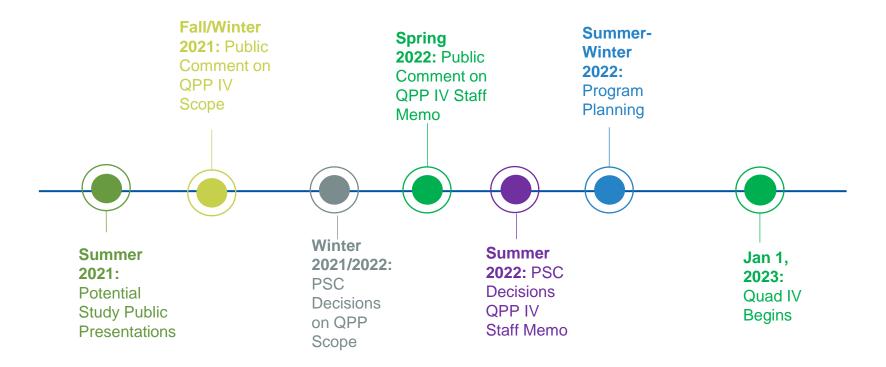
Scenario Analysis and Results

Potential Benchmarking

Conclusions and Recommendations

2nd Draft Report will add on:

Appendices


- Analysis Methodology
- Survey and Site Visit Findings
- Baseline Data
- Detailed Assumptions and Energy Efficiency Potential
- Detailed Results from Scenario Analysis
- Industrial Expert Interview Findings
- Community Action Partner Stakeholder
 Interview Findings
- Benchmarking Sources
- Sector Survey Instruments
- Industrial Expert Interview Guide
- Community Action Partner Stakeholder
 Interview Guide

Include IncomeQualified Results and Barriers
Discussion

Potential Study Integration With Program Planning

Potential Study and Stakeholder Engagement 1st Step in multi-year Quadrennial IV Planning Process (QPP IV), PSC Docket 5-FE-104

Types of Potential Estimated

Not Technically Feasible	Technical Theoretical maximum energy that can be displaced by efficiency			
Not Technically Feasible	Not Cost- Effective	Economic Economically cost-effective compared to supply side alternatives		
Not Technically Feasible	Not Cost- Effective	Market Barriers	Optimized Accounts for real-world barriers and non-measure costs of delivering programs	
Not Technically Feasible	Not Cost- Effective	Market Barriers	Budget Constraints	Current Policy Constrained to Focus budget and balance of ratepayer funding

Potential Study does not provide program targets

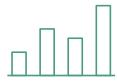
Program targets developed through comprehensive quad planning process

Reminder of Primary Reporting

Optimized potential is the cost-effective EE savings attainable without implementation constraints (analogous to maximum achievable potential from 2017)

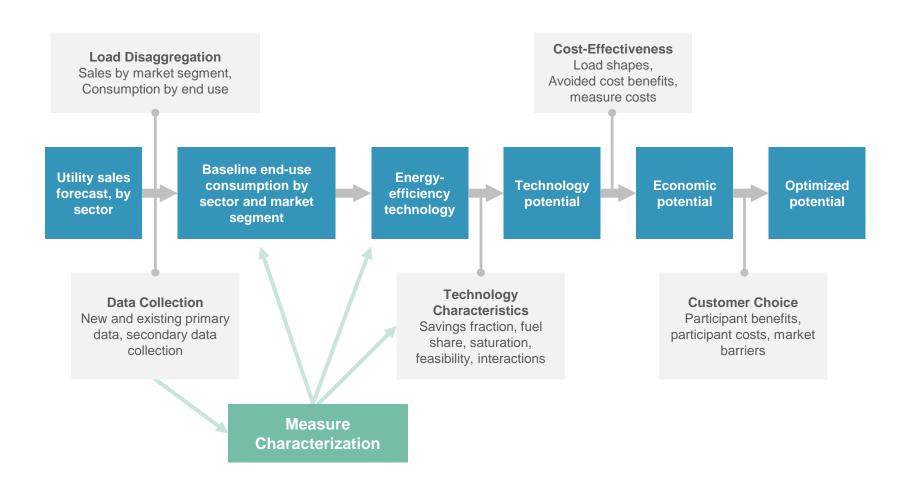
Current policy potential will be a subset of optimized potential, constrained by annual budget amounts, based on current Focus on Energy funding levels.

Core Potential Scenarios


12-Year Study Horizon (2023 – 2034) with focus on Quad IV (2023 – 2026)

Core Scenario

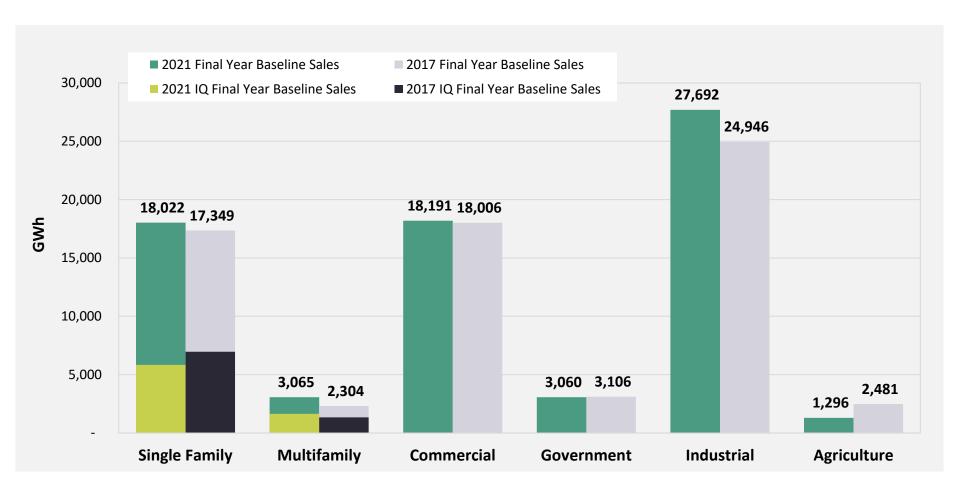
Optimized


Current Policy

Scenarios

Discount rates, avoided cost forecasts, avoided carbon prices, funding levels, EISA timing, etc.

Methodology Overview

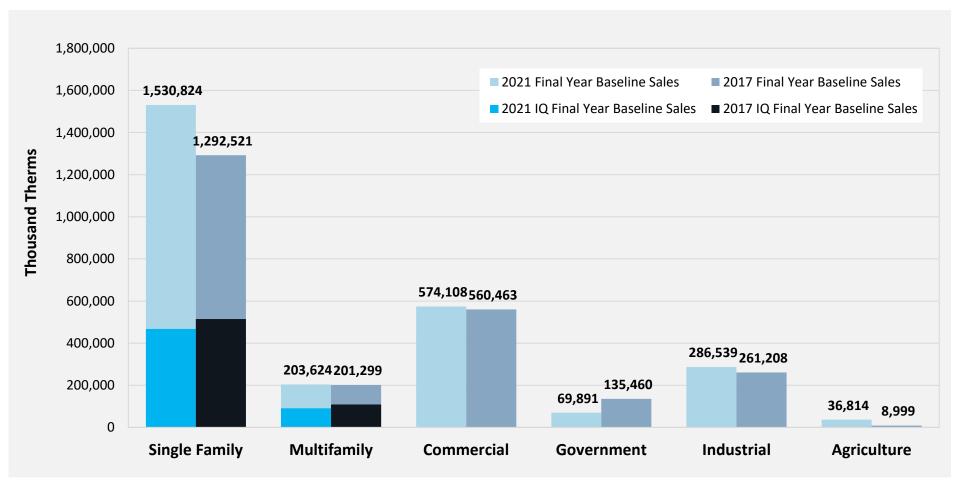


Draft Sector Level Final Year Baseline Sales

Electric Final Year Baseline Sales

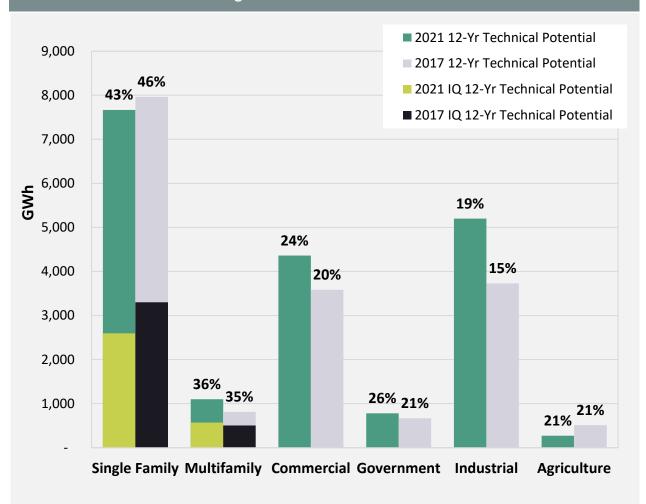
2021 Study: 71,325 GWh (in 2034)

2017 Study: 68,192 GWh (in 2030)



Draft Sector Level Final Year Baseline Sales

Natural Gas Final Year Baseline Sales


2021 Study: 2,701,800 Thousand Therms (in 2034)

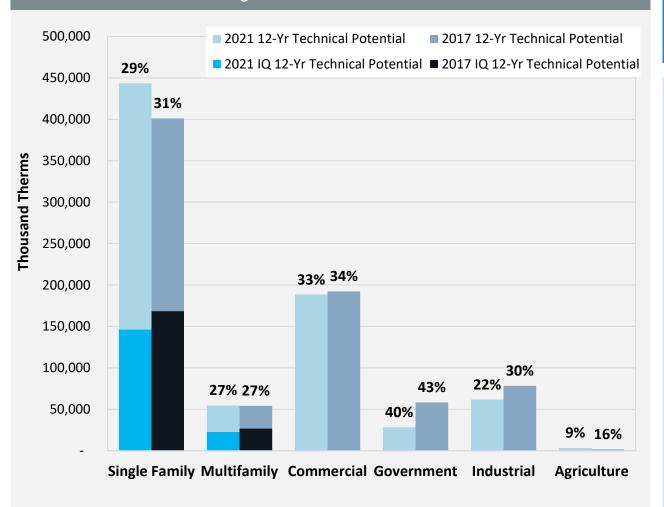
2017 Study: 2,459,950 Thousand Therms (in 2030)

Draft Sector Level Electric Technical Potential

Percentages indicate 12-Year Cumulative, Technical Potential as a Percentage of Final Year Baseline Sales

12-Year Cumulative Technical Potential Relative to Baseline

2021: 27%


2017: 25%

Key Changes

- Updated fuel shares saturations with 2020 survey data
- Updated timing of commercial screw base lighting phase out
- Updated phase out timing and LED saturation of residential lighting
- Updated industrial data sources and end use savings percentages to align with recent program achievements

Draft Sector Level Gas Technical Potential

Percentages indicate 12-Year Cumulative, Technical Potential as a Percentage of Final Year Baseline Sales

12-Year Cumulative Technical Potential Relative to Baseline

2021: 29% 2017: 32%

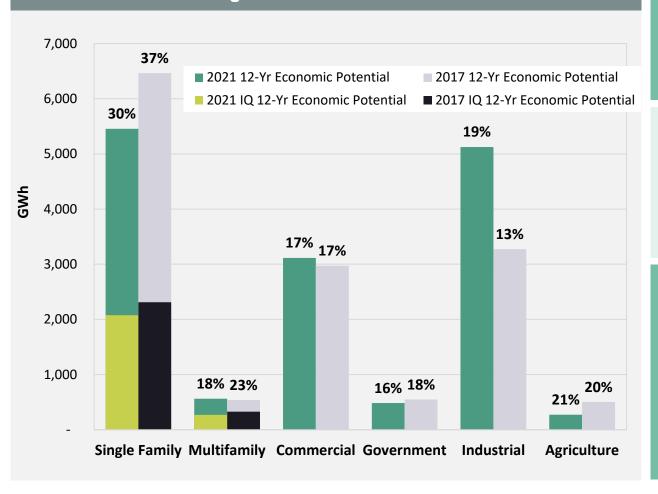
Key Changes

- Updated fuel share and saturation data based on most recent survey data
- Primary data collection of fuel shares found lower natural gas commercial and government heating equipment compared to prior study
- Updated industrial data sources and improved outlier screening methodology for industrial survey data

The Floor is Open – Feedback Welcome!

Questions/Comments?

- Technical potential draft results
- Comparison to previous study
- Drivers of change
- Other questions or comments?


Please add your questions to the meeting chat: we will address questions in the order that they are received & provide opportunity for clarification

Please remain muted until your question is announced

Draft Sector Level Electric Economic Potential

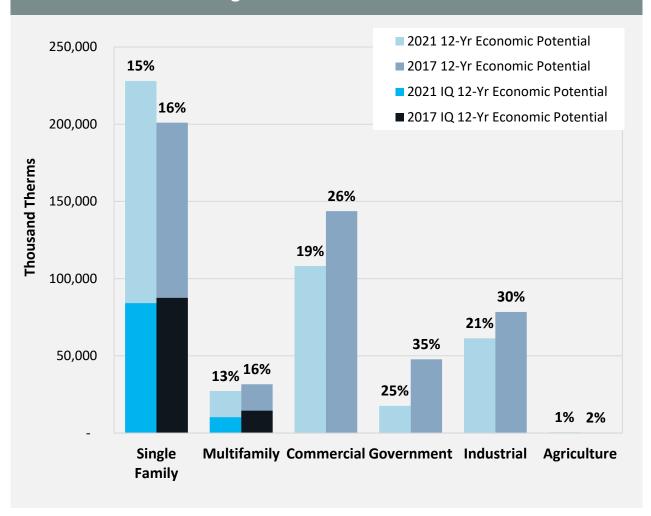
Percentages indicate 12-Year Cumulative, Economic Potential as a Percentage of Final Year Baseline Sales

12-Year Cumulative Economic Potential Relative to Baseline

2021: 21%

2017: 21%

Proportion of 12-Year
Technical Potential that is
Economic


2021: 77% 2017: 83%

Key Changes

Avoided energy costs 30% lower than in 2017, resulting in fewer measures being cost-effective

Draft Sector Level Gas Economic Potential

Percentages indicate 12-Year Cumulative, Economic Potential as a Percentage of Final Year Baseline Sales

12-Year Cumulative Economic Potential Relative to Baseline

2021: 16% 2017: 20%

Proportion of 12-Year Technical Potential that is Economic

2021: 57% 2017: 64%

Key Changes

- Avoided energy costs 30% lower than in 2017, resulting in fewer measures being costeffective
- Many large saving measures are on the borderline of being cost-effective

Borderline Cost-Effective Measures

Borderline: Measures with a modified TRC ratio of less than 1 but greater than 0.75

Electric

Residential TLED Fluorescent Lamps

Residential Advanced Entertainment Power Strip

Commercial Advanced Rooftop Unit Controller

Commercial Floating
Condenser Head Pressure
Controls

Natural Gas

Residential Basement Wall Insulation

Residential Infiltration Control

Residential Air-to-Air Heat Exchanger

Residential Wall Insulation

Residential Rim And Band Joist Insulation

Residential & Commercial Re-Commissioning

Commercial Automated Ventilation VFD Controller

Commercial Direct Digital Control System

Commercial Integrated
Space and Water Heating

Commercial Energy Star Most Efficient Furnace

Agriculture Efficient Natural Gas Grain Dryer

The Floor is Open – Feedback Welcome!

Questions/Comments?

- Economic potential draft results
- Comparison to previous study
- Drivers of change
- Other questions or comments?

Please add your questions to the meeting chat: we will address questions in the order that they are received & provide opportunity for clarification

Please remain muted until your question is announced

Ramp Rate Review Process

STEP 1
Cadmus...

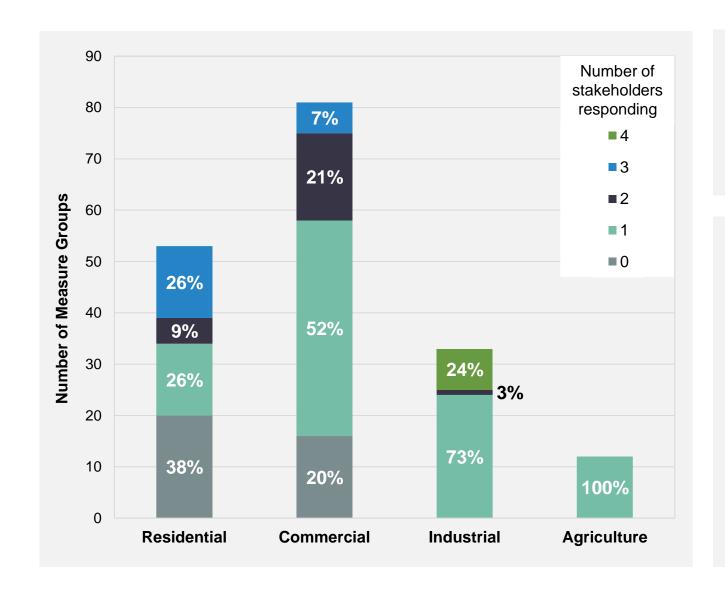
Assigned individual potential study measures to specific technology groups.

Reviewed available market data and historical Focus on Energy program performance data. Made initial assignments of ramp rates based on our review and summary of these data.

STEP 2
Experts...

Reviewed assigned technology groups in a provided workbook.

Reviewed preliminary measure group ramp rates assigned by Cadmus to technology groups. Provided expert feedback on reasonableness and appropriateness and suggest changes to Cadmus, if necessary.


STEP 3
Cadmus...

Reviewed all feedback.

Summarized comments, feedback, recommended changes, and other suggestions.

Consulted with PSC on proposed changes to preliminary ramp rates based on expert input.

Ramp Rate Sub-Group Response Rate

Requested from: 31 Experts

Received from: 25 Experts

Experts were identified based on experience in the energy industry and technology subgroup knowledge

Ramp Rate Adjustments

Increased Speed of Ramp Rate

Residential Advanced Power Strips

Residential Electronics

Residential EV Chargers

Residential Tune Ups

Commercial Computers, Servers, IT Systems, and Data Centers

Commercial Display Case LED, Control, and Cover

Commercial New Construction Lighting

Commercial Office Equipment

Commercial Plug Load Energy Reduction

Commercial Refrigerator Measures

Decreased Speed of Ramp Rate

Residential Indirect Water Heat

Residential Showerheads

Residential & Commercial Boilers

Residential & Commercial Furnaces

Commercial Chillers

Commercial Cool/Green Roofs

Commercial Efficient Windows

Commercial Fan Motors

Commercial Lighting Controls

Commercial Solar Assisted Water Heaters

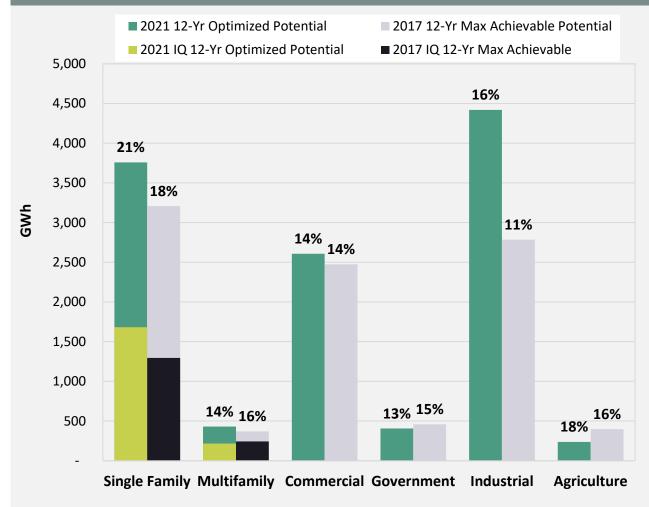
Industrial Behavioral Measures

Industrial Process Water Reduction

The Floor is Open – Feedback Welcome!

Questions/Comments?

- Ramp rate results
- Other questions or comments?


Please add your questions to the meeting chat: we will address questions in the order that they are received & provide opportunity for clarification

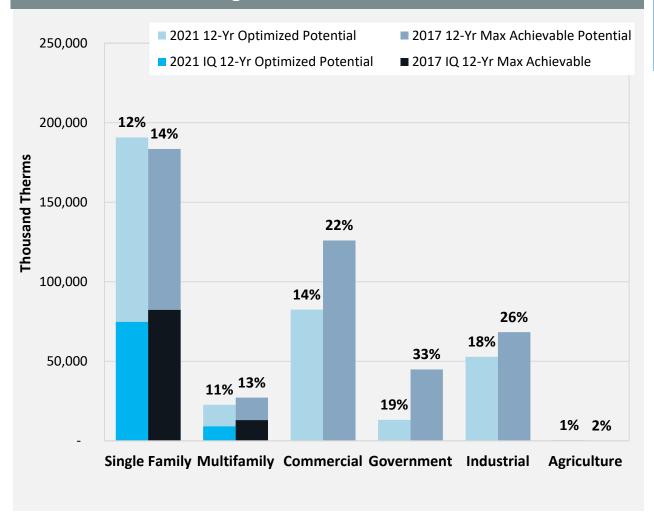
Please remain muted until your question is announced

Draft Sector Level Electric Optimized Potential

12-Year Cumulative Potential Relative to Baseline

2021 Draft Optimized: 17% 2017 Max Achievable: 14%*

*2017 Maximum Incentive Achievable scenario methodology and assumptions are not completely in line with 2021 Optimized Potential.


38% of 12-year cumulative draft optimized potential occurs in the **first four years** of the study

Average Annual Budget ~ \$90M

Average Annual Potential 988 GWh

Draft Sector Level Gas Optimized Potential

Percentages indicate 12-Year Cumulative, Optimized Potential as a Percentage of Final Year Baseline Sales

12-Year Cumulative Potential Relative to Baseline

2021 Draft Optimized: 13% 2017 Max Achievable: 18%*

*2017 Maximum Incentive Achievable scenario methodology and assumptions are not completely in line with 2021 Optimized Potential.

34% of 12-year cumulative draft optimized potential occurs in the **first four years** of the study

Average Annual Budget ~ \$47M

Average Annual Potential 30,170 Thousand Therms

Current Policy Potential Genesis

Developed annual optimized potential and associated incentive and administrative budgets

Aggregated optimized potential budgets based on sector and fuel type

Determined 4-Year and 12-Year current policy budgets by sector and fuel type

Applied a ratio to optimized potential in years 1-4 so that the 4-year budget did not exceed the current policy 4-year budget, by sector and fuel type

Applied a ratio to optimized potential in years 5-12 so that the 12-year budget did not exceed the current policy 12-year budget and the 4-year budget was maintained

Current Policy Potential Funding Constraints

Average Annual Budget

~ \$87.3M

Electric

70%

Natural Gas

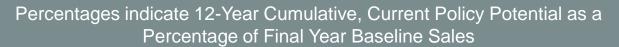
30%

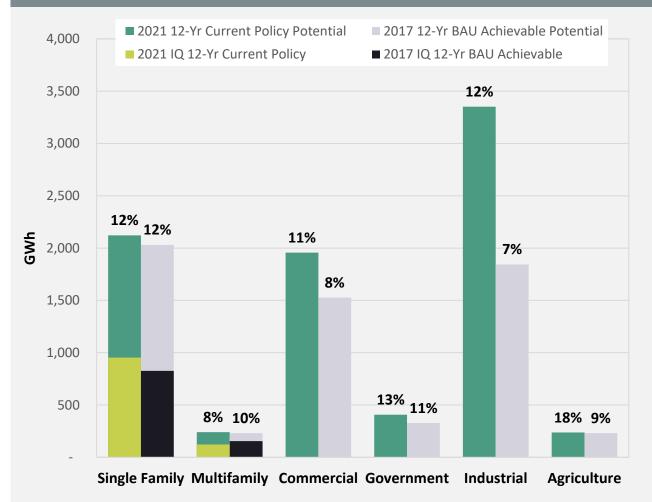
Commercial and Industrial

50%

Residential

40%




Public & Ag

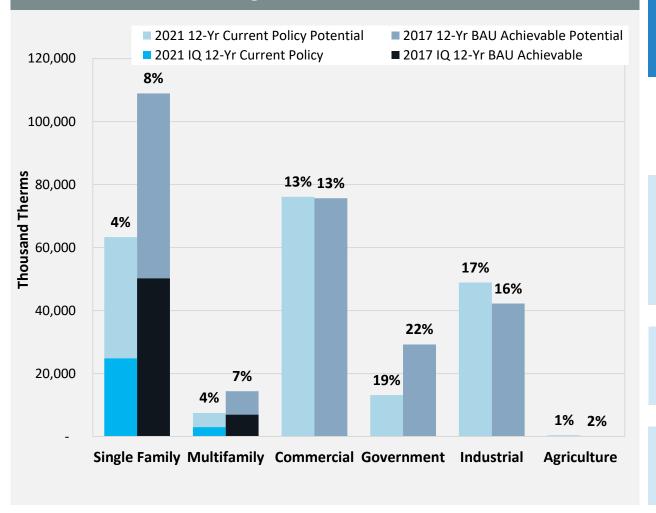
10%

Draft Sector Level Electric Current Policy Potential

12-Year Cumulative Potential Relative to Baseline

2021 Draft Current Policy: 13% 2017 BAU Achievable: 9%*

*2017 BAU Incentive Achievable scenario methodology and assumptions are not completely in line with 2021 Current Policy Potential.


34% of 12-year cumulative draft current policy potential occurs in the first four years of the study

Average Annual Budget ~ \$61M

Average Annual Potential 693 GWh

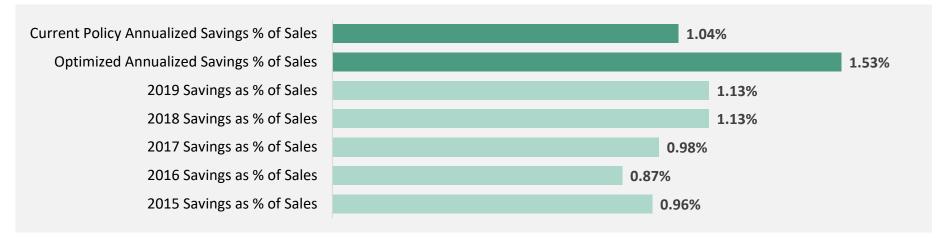
Sector Level Gas Current Policy Potential

Percentages indicate 12-Year Cumulative, Current Policy Potential as a Percentage of Final Year Baseline Sales

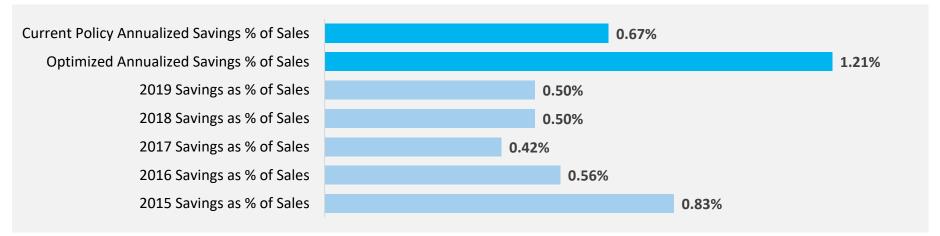
12-Year Cumulative Potential Relative to Baseline

2021 Draft Current Policy: 8% 2017 BAU Achievable: 11%*

*2017 BAU Incentive Achievable scenario methodology and assumptions are not completely in line with 2021 Current Policy Potential.


34% of 12-year cumulative current policy potential occurs in the first four years of the study

Average Annual Budget ~ \$25M


Average Annual Potential 17,449 Thousand Therms

Historical Program Accomplishments

Electric Energy Efficiency

Natural Gas Energy Efficiency

The Floor is Open – Feedback Welcome!

Questions/Comments?

- Optimized potential draft results
- Current policy potential draft results
- Comparison to previous study
- Drivers of change
- Other questions or comments?

Please add your questions to the meeting chat: we will address questions in the order that they are received & provide opportunity for clarification

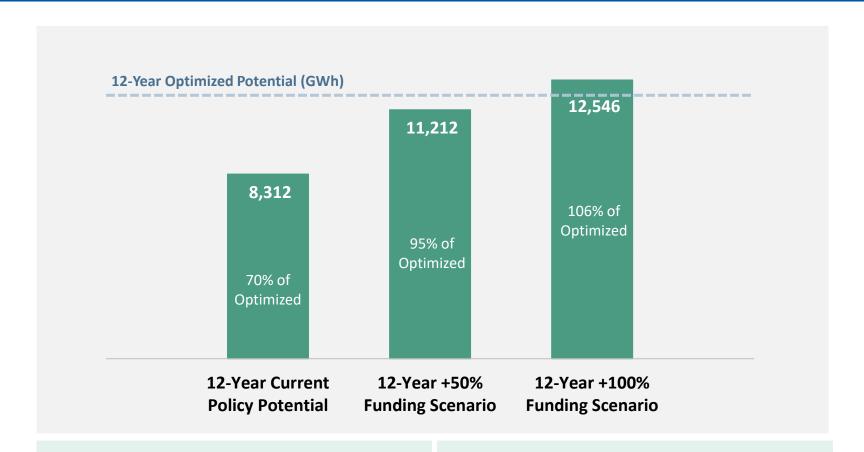
Please remain muted until your question is announced

Focus Funding Scenarios

Current Policy

Annual Budget ~ \$87.3M

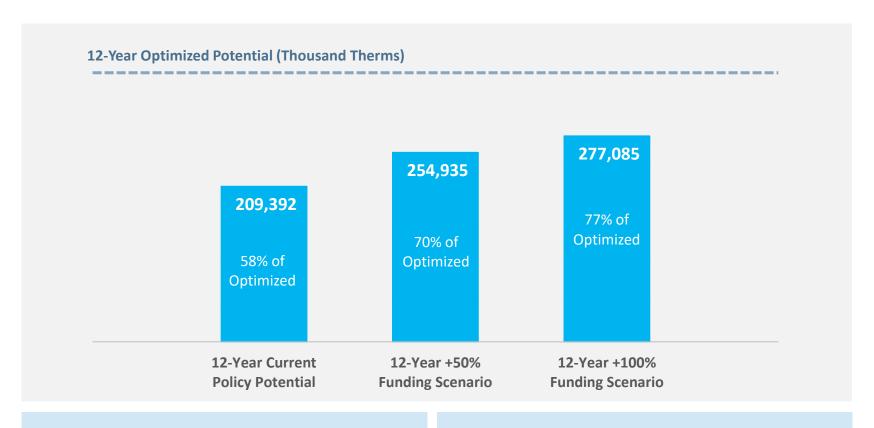
+50% Funding


Annual Budget ~ \$131M

+100% Funding

Annual Budget ~ \$175M

Electric Focus Funding Scenarios (Draft)


Changes compared to Cumulative 12-Year Current Policy Potential

+50% Funding Scenario: +35% +100% Funding Scenario: +51%

Annual Savings as a Percent of Sales

Current Policy: 1.04% +50% Funding Scenario: 1.44% +100% Funding Scenario: 1.63%

Gas Focus Funding Scenarios (Draft)

Changes in Cumulative 12-Year Current Policy Potential

+50% Funding Scenario: +22% +100% Funding Scenario: +32%

Annual Savings as a Percent of Sales

Current Policy: 0.67% +50% Funding Scenario: 0.83% +100% Funding Scenario: 0.91%

Alternate Economic Assumption Scenarios

Base

2%

Discount Rate

Cost of Carbon: \$15/ton (market rate)

T&D Benefits: Excluded

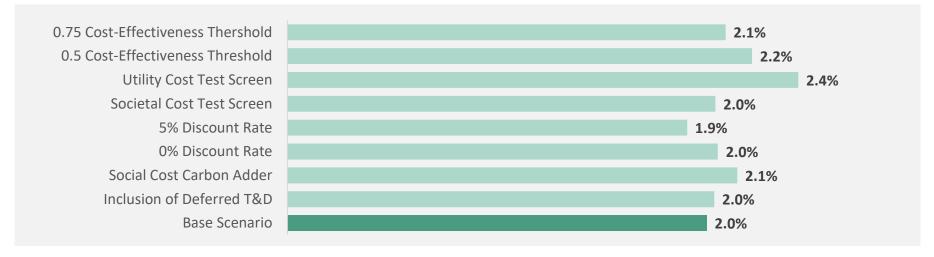
Alternate Scenarios*

5%

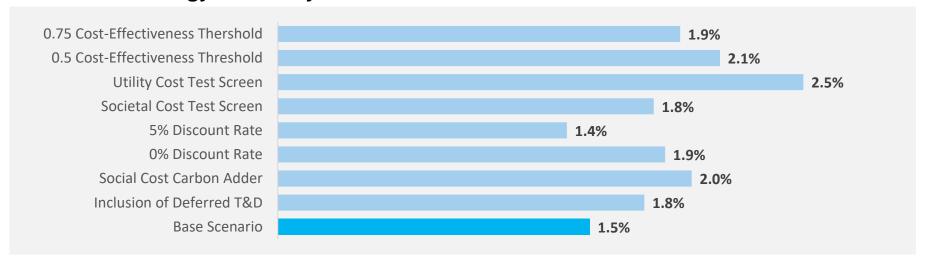
Discount Rate

0%

Discount Rate


Social Cost of Carbon: **\$69/ton** (levelized)

T&D Benefits of \$67-\$70 per kW-Year


*Alternate Scenarios did not consider combined effects

Average Annual Economic Potential Relative to Baseline Sales

Electric Energy Efficiency

Natural Gas Energy Efficiency

Electric Alternate Economic Assumption Scenarios

Base Scenario 15,010 Inclusion of Deferred T&D **15,244** Social Cost Carbon Adder **15,957**

0% Discount Rate **15,356**

5% Discount Rate **14,389**

12-Year Cumulative Economic Potential as a Percentage of 2034 Sales

Base: 21.0%

5% Discount Rate: 20.2% 0% Discount Rate: 21.5% Social Cost of Carbon: 22.4% Inclusion of T&D: 21.4%

Changes in Base Scenario Cumulative 12-Year Economic Potential

5% Discount Rate: -4.1%

0% Discount Rate: +2.3%

Social Cost of Carbon: +6.3%

Inclusion of T&D: +1.6%

Gas Alternate Economic Assumption Scenarios

Base Scenario 442,641 Inclusion of Deferred T&D **511,592** Social Cost Carbon Adder 569,598

0% Discount Rate **537,143**

5% Discount Rate **412,940**

12-Year Cumulative Economic Potential as a Percentage of 2034 Sales

Base: 16.4%

5% Discount Rate: 15.3% 0% Discount Rate: 19.9%

Social Cost of Carbon: 21.1%

Inclusion of T&D: 18.9%

Changes in Base Scenario Cumulative 12-Year Economic Potential

5% Discount Rate: -6.7%

0% Discount Rate: +21.3%

Social Cost of Carbon: +28.7%

Inclusion of T&D: +15.6%

Alternate Cost-Effectiveness Scenarios

Base

Cost Test:
Modified TRC

Benefits:

Avoided Energy & Carbon Emissions

Costs:

Equipment and Admin

Includes O&M Cost: No

10% Conservation Benefit:

No

44

CE Threshold:

Utility Cost Test

Cost Test: UCT

Benefits:

Avoided Energy

Costs:

Incentive and Admin

Includes O&M Cost:

10% Conservation Benefit:

No

CE Threshold:

1

Societal Cost Test

Cost Test: SCT

Benefits:

Avoided Energy & Non-Energy Benefits

Costs:

Equipment and Admin

Includes O&M Cost: Yes

10% Conservation Benefit:

Yes

CE Threshold:

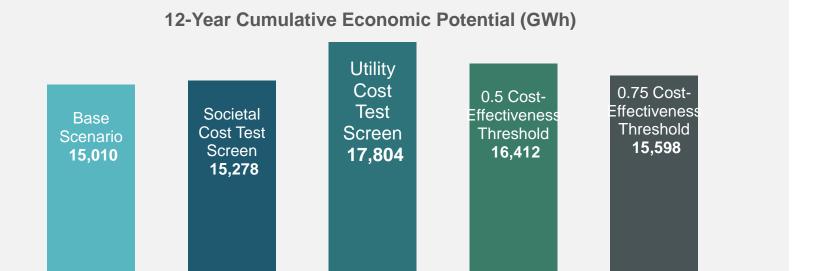
0.5 mTRC Threshold

Cost Test:

Modified TRC

CE Threshold: 0.5

0.75 mTRC Threshold


Cost Test:

Modified TRC

CE Threshold:

0.75

Electric Alternate Cost-Effectiveness Scenarios

12-Year Cumulative Economic Potential as a Percentage of 2034 Sales

Base: 21.0% Societal Cost Test: 21.4% Utility Cost Test: 25.0% 0.5 CE Threshold: 23.0% 0.75 CE Threshold: 21.9%

Changes in Base Scenario Cumulative 12-Year Economic Potential

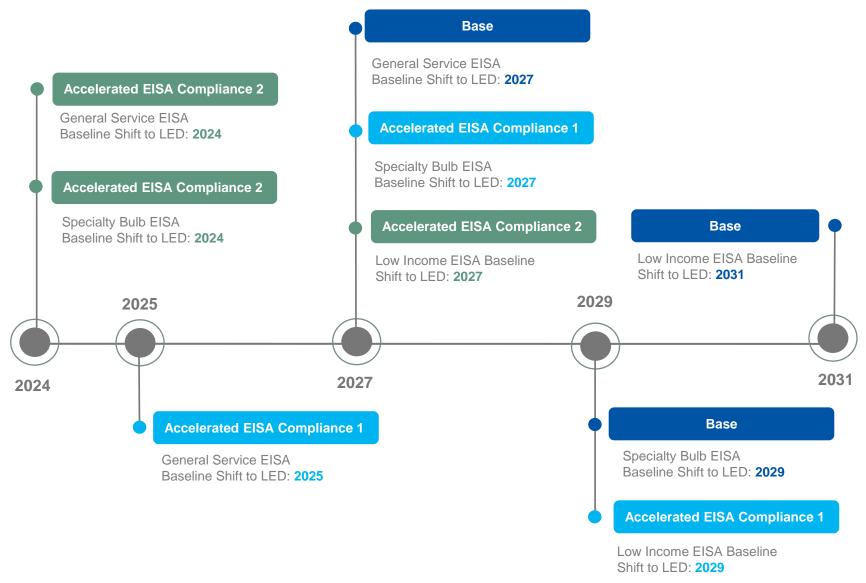
Societal Cost Test: +1.8% Utility Cost Test: +18.6% 0.5 CE Threshold: +9.3% 0.75 CE Threshold: +3.9%

Gas Alternate Cost-Effectiveness Scenarios

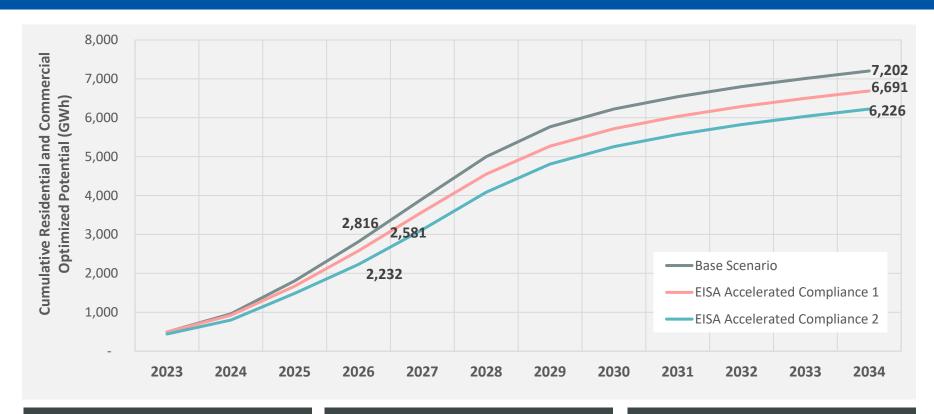
Base Scenario 442,641 Societal Cost Test Screen 523,225 Utility Cost Test Screen **699,950**

0.5 Cost-Effectiveness Threshold **603,456**

0.75 Cost-Effectiveness Threshold **555,516**


12-Year Cumulative Economic Potential as a Percentage of 2034 Sales

Base: 16%
Societal Cost Test: 19%
Utility Cost Test: 26%
0.5 CE Threshold: 22%
0.75 CE Threshold: 21%


Changes in Base Scenario
Cumulative 12-Year Economic Potential

Societal Cost Test: +18% Utility Cost Test: +58% 0.5 CE Threshold: +36% 0.75 CE Threshold: +25%

EISA Compliance Scenarios

EISA Compliance Scenarios (Draft)

Accelerated EISA Scenario 1
Commercial and Residential
12-Year Optimized Potential is 7%
Lower than the Base Scenario

Accelerated EISA Scenario 2
Commercial and Residential
12-Year Optimized Potential is 14%
Lower than the Base Scenario

4-Year as a % of 12-Year Cumulative Commercial and Residential Optimized Potential

Base: 39.1% EISA Accel 1: 38.6% EISA Accel 2: 35.8% 12-Year Optimized Potential as a % of 2034 Commercial and Residential Sales

Base: 17% EISA Accel 1: 16% EISA Accel 2: 15%

The Floor is Open – Feedback Welcome!

Questions/Comments?

- Scenario draft results
- Other questions or comments?

Please add your questions to the meeting chat: we will address questions in the order that they are received & provide opportunity for clarification

Please remain muted until your question is announced

Q & A and Next Steps

Please add questions and comments to the meeting chat.

Anything that we have or have not discussed today?

Next Steps:

1st Draft Report to Stakeholders (June 4, 2021)

3-Week Report Review Period for Stakeholders (June 4 to June 25, 2021)

Your feedback and input is important, please send us feedback

Other feedback opportunities

Email Jeremy Eckstein at Cadmus (jeremy.eckstein@cadmusgroup.com)

or contact **Mitch Horrie** at PSC (<u>Mitch.Horrie@wisconsin.gov</u>)